研究 / Research Topics
社会や企業の課題解決は、複雑さによる想定外の振る舞いや、将来の不確実性のために困難です。例えば、電気自動車の補助や炭素税の導入が、どのくらい温暖化ガスの排出を削減できるかは、社会システムの変化に大きく影響を受けます。
本研究室は、システムデザインの方法論やシステム思考的アプローチを基盤とし、以下のテーマに取り組みます。
複雑で知的なシステムのデザイン
定性的なモデルによる記述、計算機による定量的なモデル、データ解析の組み合わせにより、複雑で不確実なシステムの挙動を明らかにするシミュレーションモデルの開発。また、シミュレーションによる課題解決に向けた意思決定やシステムのデザイン。
課題解決に向けた組織のトランスフォーメーション手法。
Solving social and business challenges is difficult due to unexpected behaviour caused by complexity and uncertainty about the future. For example, the extent to which subsidising electric vehicles or introducing a carbon tax can reduce greenhouse gas emissions is heavily influenced by changes in social systems.
Building on systems design methodologies and systems thinking approaches, this laboratory addresses the following themes.
Development of simulation models that clarify the behavior of complex and uncertain systems through a combination of description by qualitative models, quantitative models by computers, and data analysis. Development of methodologies to create acreative solutions to problems based on the context of the system.
Efforts to promote the transformation of organizations to achieve creative solutions to problems.
複雑システムのデザイン / Complex Systems Design
社会におけるシステムでは、不確実性、システム内部の相互作用のために、選んだデザインのパフォーマンスは予想できません。また、すべての利害関係者にとっての唯一の最適なデザインは存在せず、より多くの利害関係者にとって望ましいデザインポイントを探索することになります。
本テーマでは、システム思考やシステムズエンジニアリングで利用される手法やアプローチにより、ステークホルダーの期待をとらえ、システムの挙動を定性・定量の両面から推定し、システムデザインのトレードスペースを示すことで、複雑で大規模なシステムのあるべき姿を検討します。
Due to uncertainty, interactions within the system and the complexity of interests, it is difficult to show what system design is desirable and reasonable.
In this theme, methods and approaches used in systems thinking and systems engineering are used to capture stakeholder expectations, estimate system behaviour both qualitatively and quantitatively, and show the trade spaces of system design, in order to examine what complex, large-scale systems should be like .
複雑な社会技術システムの分析と記述 /
Analysis of Complex Social and Technological Systems
Analysis of Complex Social and Technological Systems
By connecting information technology to industry and society, people's lives have become more convenient than ever. At the same time, the complexities of the various systems and organizations that have been systematized have created many difficult problems to solve. For example, the promotion of decarbonization and the introduction of automation technology that we are working on in our laboratory require social and technological efforts.In our laboratory's approach to such problems, the research theme is to describe the context and behavior of the systems using a qualitative modeling method to deepen understanding and define ambiguous problem awareness as a solvable problem.
Chapter 2 of "Ichinose, Y., Hayashi, M., Nomura, S., Moser, B., & Hiekata, K. (2022). Sustainable Data Centers in Southeast Asia: Offshore, Nearshore, and Onshore Systems for Integrated Data and Power. Sustainable Cities and Society, 81, 103867. https://doi.org/10.1016/J.SCS.2022.103867"
ゼロエミッションデータセンターのコンセプトデザイン
Social Systems Design towards Zero Emission: Data Center Case
Social Systems Design towards Zero Emission: Data Center Case
Ichinose, Y., Hayashi, M., Nomura, S., Moser, B., & Hiekata, K. (2022). Sustainable Data Centers in Southeast Asia: Offshore, Nearshore, and Onshore Systems for Integrated Data and Power. Sustainable Cities and Society, 81, 103867. https://doi.org/10.1016/J.SCS.2022.103867
システムダイナミクスによるソフトウェア開発プロジェクトのマネジメント
A System Dynamics Approach towards Design and Management for Software Development Projects
A System Dynamics Approach towards Design and Management for Software Development Projects
Mst Taskia Khatun, Kazuo Hiekata, Yutaka Takahashi & Isaac Okada (2022). Design and management of software development projects under rework uncertainty: a study using system dynamics. Journal of Decision Systems, 1-24. https://doi.org/10.1080/12460125.2021.2023257
Kota Tsubouchi, Hiroyuki Yamato, Kazuo Hiekata, Innovative on-demand bus system in Japan, IET Intelligent Transportation System, 4(4), pp. 270-279, 2010.12
オンデマンド交通に関する研究
「日本一わかりやすいMaaS&CASE――ストーリーで理解する」中村 尚樹 (著) プレジデント社 第二章で紹介されています
社会システムのトランスフォーメーション/ Transition Path Design for Complex Systems
多くの利害関係者が受け入れられるデザインポイントが得られても、そのデザインを実現するまでの道筋には、利害関係者による合意形成や組織慣性の影響など、多くの困難があります。
この難しさに対して、シミュレーションによる社会システムの遷移状態のデザインや、ワークショップによる合意形成手法など、社会システムのトランスフォーメーションを進める研究に取り組んでいます。
Even if desirable design points are obtained for many stakeholders, there are many difficulties on the path to realising the design, such as consensus building by stakeholders and the influence of organisational inertia.
To address these difficulties, we are engaged in research to promote the transformation of social systems, including the design of transition states in social systems through simulation and consensus-building methods in workshops.
自動運航技術導入を加速する政策のデザイン
Policy Design for the Introduction of Automatic Operation Technology
Policy Design for the Introduction of Automatic Operation Technology
We built an industrial simulator that models the relationships among stakeholders in the maritime industry, including policy makers, shipping companies, and shipyards and manufacturers, and conducted a world-leading study to explore the combination of stakeholder decision making that will accelerate the introduction of automated vessels. The study modeled and simulated the economic feasibility and safety of 12 types of automated vessels in combination, and the impact of industrial activity on these factors. The results showed that, among the various options available, deregulation combined with subsidies for R&D and demonstration projects would accelerate the timing of the introduction of automated vessels. It is hoped that the proposed simulations can be used by policy makers and companies in their decision-making to achieve a smooth consensus-building process for the early introduction of new technologies.
Nakashima, T., Moser, B., & Hiekata, K. (2023). Accelerated adoption of maritime autonomous vessels by simulating the interplay of stakeholder decisions and learning. Technological Forecasting and Social Change, 194, 122710. https://doi.org/10.1016/J.TECHFORE.2023.122710
適切な意思決定で自動運航の実現が大きく加速 ― シミュレーションが明らかにするステークホルダーの協力の効果 ― https://www.k.u-tokyo.ac.jp/information/category/press/10269.html
チームワークの可視化:複雑なシステムの挙動の共通理解
Teamwork Environement for Understanding Systems Behaviors
Teamwork Environement for Understanding Systems Behaviors
I. Winder, D. Delaporte, S. Wanaka and K. Hiekata, "Sensing Teamwork During Multi-objective Optimization," 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2020, pp. 1-6, doi: 10.1109/WF-IoT48130.2020.9221086.
チームワークの可視化:コミュニケーションのパターン分析
Teamwork Visualization
Teamwork Visualization
Peng, S., Amakasu, T., Kawauchi, H., Horii, H., & Hiekata, K. (2021). Development of Method for Visualizing Behavioral States of Teams. In L. Newnes, S. Lattanzio, B. R. Moser, J. Stjepandić, & N. Wognum (Eds.), Advances in Transdisciplinary Engineering. IOS Press. https://doi.org/10.3233/ATDE210134
認知バイアス排除の取り組み:業務プロセスシミュレータを用いたサイバーセキュリティ対策ワークショップの開発
Approaches to Eliminating Cognitive Bias: Development of a Cybersecurity Workshop Using a Business Process Simulator
Approaches to Eliminating Cognitive Bias: Development of a Cybersecurity Workshop Using a Business Process Simulator
Where complex decision-making is required, such as cyber security incident response, cognitive bias may occur, To solve the problem, we developed a simulator that calculates the time and work required for response. Furthermore, through hands-on workshops using the developed simulator, we will remove the cognitive bias and motivate them to inprove their incident process.
T.kasubuchi, K. Hiekata, Propose and evaluate a workshop method to improve the security incident response process by using process simulation., 2022-SPT-48, Vol.37, pp. 1-8 ,2022
連携研究プロジェクト / Collaborative Research Project
See below for projects carried out in collaboration with external research organisations and other organisations.